STATISTICS FOR ASTRONOMY 2021–2022 RE-EXAMINATION 3 February 2022 (15:00 - 18:00)

DIRECTIONS: Allow 3 hours. Write your name and student number at the top of every page of your solutions. Please explain clearly all of the steps that you used to derive a result. Please make certain that your handwriting is readable to someone besides yourself.

- 1. Answer the following open questions: (8 points/question)
 - (a) Given N mutually exclusive hypotheses $\{H_i\}$ that together cover all possible options. Consider the case of calculating $\operatorname{prob}(A \mid I)$ from $\operatorname{prob}(A, H_i \mid I)$ using marginalization, where I is some background information.
 - i. Write down Cox's product and sum rules.
 - ii. What equation is implied by having N mutually exclusive hypotheses $\{H_i\}$ that together cover all options?
 - iii. Use these equations to derive the mathematical formula that describes the discrete marginalization rule.
 - (b) In the context of parameter estimation, describe the difference between a scale parameter and a location parameter. What is the appropriate prior for each case?
 - (c) For certain parameter estimation problems, the most probable estimate of the parameters can be solved by minimizing the χ^2 function, i.e., by doing a least-squares fit.
 - i. Write down the four requirements necessary for least-squares fitting to produce the most probable estimate.
 - ii. Consider the case of fitting parameter a in model function $f(x) = a \tan(x^2)$ to a set of N measurements $\{y_i\}$ with corresponding uncertainties $\{\sigma_i\}$ and positions $\{x_i\}$, with $0 < i \leq N$. The position values $\{x_i\}$ can be considered to have absolute certainty (i.e., have no errors). Write down the χ^2 function that needs to be minimized.
 - (d) Given a one-dimensional probability density function, describe how you would find and compute the 95% confidence interval.
 - (e) Describe the principle of indifference and give a simple example of its application to determine a distribution function.
 - (f) Given a continuous uniform distribution function $\operatorname{prob}(x) = \frac{1}{5}$ for $0 \le x \le 5$ and $\operatorname{prob}(x) = 0$ otherwise:
 - i. Calculate $\langle x \rangle$
 - ii. Calculate $\left\langle x^3-1\right\rangle$
 - iii. Calculate Var(x), the variance of x.
 - (g) Describe what the Levenberg-Macquard algorithm can be used for and how it conceptually works. What two methods does it combine?
 - (h) Given that we know prob(data $| \eta, a, b, c, I$) and prob $(\eta | I)$, how would we calculate prob $(\eta | \text{data}, I)$ from these two functions?

 \rightarrow See next page for questions 2 and 3

- 2. Two open questions involving derivations:
 - (a) (14 points) Assume a coin with unknown bias $H \in [0...1]$ is thrown N times (H = 0.5 for a fair coin, H = 1 for a coin that always throws heads). The number of times heads comes up is R. Therefore, $P(R \mid H, N, I) \propto H^R (1 H)^{N-R}$. Start from Bayes' theory and, given R and N, derive these two expressions:
 - H_0 , the best estimate of the bias.
 - σ_H^2 , the variance of H_0 .
 - (b) (12 points) Consider "the lighthouse problem" (Fig. 1): A lighthouse at sea is at a position α along the coast and a distance β at sea. The shore is lined with photodetectors that record only that a flash has been recorded, but not the angle from which it came. N flashes have been recorded at positions $\{x_i : 0 \le i < N\}$ along the coast, corresponding with azimuth directions $\{\theta_i : 0 \le i < N\}$. The relation between a detected position and azimuth direction is given by $\beta \tan \theta_i = x_i \alpha$. We know that the lighthouse flashes uniformly in the directions of interest: $\operatorname{prob}(\theta_i | \alpha, \beta, I) = \frac{1}{\pi}$ for $-\frac{\pi}{2} \le \theta_i \le \frac{\pi}{2}$. Write down the transformation rule, and use it to calculate $\operatorname{prob}(x_i | \alpha, \beta, I)$.

Hint: the table below contains some of the common trigonometric derivatives.

function	derivative	function	derivative
$\sin x$	$\cos x$	$\arcsin x$	$1/\sqrt{1-x^2}$
$\cos x$	$-\sin x$	$\arccos x$	$-1/\sqrt{1-x^2}$
$\tan x$	$\sec^2 x$	$\arctan x$	$1/(1+x^2)$

Figure 1: The Lighthouse problem (see Question 2b)

- 3. True/false questions mark T for a true statement or F for a false statement on your paper: 1 point/question
 - (a) In a statistical context, the words "error" and "uncertainty" are synonyms.
 - (b) The theory of Ockham's razor can be used to show that conspiracy theories that involve highly specific and tweaked models(/ideas) are highly unlikely.
 - (c) Compared to Spearman's rank-order correlation coefficient, the linear correlation coefficient is more robust against outliers.
 - (d) The Poisson distribution is given by $\operatorname{prob}(k) = \frac{\lambda^k e^{-\lambda}}{k!}$
 - (e) Obtaining $\operatorname{prob}(B \mid I)$ from $\operatorname{prob}(A, B \mid I)$ requires marginalization over parameter A.
 - (f) The central limit theory states that distributions that have a well defined mean tend to a uniform distribution for large N.
 - (g) The best estimate of a parameter drawn from a (one-dimensional) Gaussian distribution based on data with unequal uncertainties is the weighted mean of the individual data points.
 - (h) The mean of the Poisson distribution is equal to its standard deviation.
 - (i) MCMC (Markov chain Monte Carlo) methods can be used to analyse the posterior of complex, non-linear models.
 - (j) There are four alpacas. Each alpaca spends half of its time eating grass and the other half of its time sleeping or drinking. All of them have different, independent eat-sleep-drink rhythms and durations. The chance that I find all alpacas eating at a particular time is 1/8th.